
Privacy and Security Issues in Cloud
Shiv Shankar Barai, Sridhar Mocherla

Computer Science and Engineering, CBIT
Hyderabad, Telangana, India

Abstract— Cloud computing has become ubiquitous in the
corporate world. Its effectiveness in reducing cost while
providing a collaborative platform for information processing
has helped overhaul the traditional information storage
systems and overcome the faults. But, cloud storage involves
sharing data with a third-party and security becomes a vital
issue. Organizations cannot afford any confidential data to be
stolen and in the case that happens, the damage could be
irreparable. In this paper, various problems and solutions
regarding cloud security are discussed. An overview of cloud
security is given before dealing with specific issues dealt by
organizations and solutions to those problems.

Keywords— Cloud, Encryption, Security, Privacy, Social networks.

I. INTRODUCTION

Cloud computing is a phrase used to describe a variety of
computing concepts that involve a large number of
computers connected through a real-time communication
network such as the Internet. Instead of storing/processing
data, creating and running applications on a local machine,
cloud computing removes the tedious tasks and gives the
user convenient access to perform his operations. With the
increase in internet speeds around the world, the
prominence of cloud has rapidly risen. Security of data and
applications has become a major issue with the increase in
scale of clouds. Cloud Security is a sub-domain of cloud
computing that refers to a broad set of policies,
technologies, and controls deployed to protect data,
applications, and the associated infrastructure of cloud
computing.

Cloud security architecture is effective only if the correct
defensive implementations are in place. An efficient cloud
security architecture should recognize the issues that will
arise with security management. The security management
addresses these issues with security controls. These controls
are put in place to safeguard any weaknesses in the system
and reduce the effect of an attack. While there are many
types of controls behind a cloud security architecture, they
can usually be found in one of the following categories –
 Deterrent, Preventive, Corrective and Detective controls.

II. PRIVACY AND SECURITY CONCERNS

In general, the security and privacy issues face by
outsourcing data to cloud can be categorized as below:

A. Identity Management

Every enterprise will have its own identity management
system to control access to information and computing
resources.

B. Physical & Personnel Security

Providers ensure that physical machines are adequately
secure and that access to these machines as well as all
relevant customer data is not only restricted but that access
is documented.

C. Availability

Cloud providers assure customers that they will have
regular and predictable access to their data and
applications.

D. Application Security

Cloud providers ensure that applications available as a
service via the cloud are secure by implementing testing
and acceptance procedures for outsourced or packaged
application code. It also requires application
security measures be in place in the production environment.

E. Privacy

Finally, providers ensure that all critical data (credit card
numbers, for example) are masked and that only authorized
users have access to data in its entirety. Moreover, digital
identities and credentials must be protected as should any
data that the provider collects or produces about customer
activity in the cloud.

F. Legal Issues

In addition, providers and customers must consider legal
issues, such as Contracts and E-Discovery, and the related
laws, which may vary by country.

III. CURRENT ISSUES AND PROPOSED SOLUTIONS

From here on, three specific and complex issues faced by
organizations when deploying information to the cloud are
dealt with in detail. These issues are – Data ownership and
group management, Outsourcing data to a cluster of
machines, Outsourcing social networks to cloud.
A. Data Ownership and Group Management

Data storage is one of the services offered by cloud
providers. Consider the practical data application of a
company. A company allows its staffs in same group or
department to store and share files in the cloud. This
relieves the staff from maintaining local storage. However,
issues like confidentiality of data, privacy of users are under
threat. Cloud providers are generally perceived as
untrustworthy by users. Data privacy can be implemented
by encrypting data before they are stored in the cloud.
Identity privacy must not be absolute as it may be misused.
Another feature that must be implemented is multiple-
ownership of data i.e. any member of a group can modify

Shiv Shankar Barai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4110-4117

www.ijcsit.com 4110

the data that belongs to the group. Groups are also dynamic
in nature. Users can leave groups and new users may
replace them. Handling of data sharing becomes extremely
complex in such situations. To handle all of the conditions
mentioned above, a system is proposed for multi-
owner data sharing scheme for dynamic groups in cloud,
whose features are:

1. Any user in any group can securely share data with
others in the untrusted cloud.

2. New users can access data belonging to the group
without contacting other participants.

3. Confidentiality of data and anonymity of users are
preserved. In case of identity disputes, group
manager can reveal the real identities.

4. Effectiveness of scheme is realized by providing
extensive simulations.

1) Terminology: Bilinear Maps: Let G1 and G2 be an
additive cyclic group and a multiplicative cyclic
group of the same prime order q, respectively [11].
Let e :G1xG1->G2 denote a bilinear map constructed
with the following properties:
1. Bilinear: For all a,b ε Zq

* and P,Q ε G1,
e(aP,bQ)=e(P,Q)ab

2. Nondegenerate: There exists a point P such
that e(P,P)≠1

3. Computable: There is an efficient algorithm to
compute e(P,Q) for any P,Q ε G1.

Group Signature: Group signatures allow any
member of the group to sign messages while keeping
the identity secret from verifiers. A group signature
scheme is used to provide anonymous access control in
the proposed system.

Dynamic Broadcast Encryption: Broadcast
encryption allows a broadcaster to transmit encrypted
data so that only a privileged subset can decrypt the
data. Dynamic broadcast encryption allows the group
managers to dynamically include new members while
preserving previously computed information. The
dynamic broadcast encryption technique introduced
here is based on bilinear pairs.

2) System Model: There are major entities involved in
the proposed system – Cloud, Group Manager and
Group Members. Cloud is operated by CSPs and
provides storage capabilities. But the cloud is not
trusted by the users. Group manager take charge of
system parameters, user registration, revocation of
users and revealing the real identity of a disputed
data owner. Group members are a set of registered
users that store their private data into the cloud
server and share them with others in their group.

Fig 1. Overview of the system

3) Proposed Model: The various details of the
proposed scheme are included under System
Initialization, User revocation, File generation, File
access and traceability.

System Initialization: The group manager is responsible
for system initialization as follows:

1. Generating a bilinear map group system
S=(q1,G1,G2,e).

2. Selecting two random elements H, H0 ε G1,
along with two random numbers ε1,ε2 ϵ Zq

*,
computing U=ε1

-1H and V=ε2
-1H ϵ G1 such that

ε1.U=ε2.V. In addition, the group manager
computes H1, H2 where H1=ε1H0 and H2=ε2H0 ϵ
G1.

3. Randomly choosing two elements P,G ϵ G1 and
a number γ ϵ Zq

* and computing W=γ.G and
Z=e(G,P), respectively.

4. Publishing the system parameters including
(S,P,H,H0,H1,H2, U, V ,W, Y ,Z, f, f1, Enck()}
where f is a one-way hash function: {0, 1}*->
Zq , f1 is hash function: {0, 1}*-> G1 and Enck()
is a secure symmetric encryption algorithm with
secret key k.

 User Registration: If a user i wants to register with
identity IDi, the group manager randomly selects a number
xi ϵ Zq

* and computes Ai, Bi as the following equation:

Fig. 2 Equations for parameters

(xi,Ai,Bi) is the private key.
User revocation:

User revocation is performed by maintain a public
Revocation List (RL). The revocation list is characterized
by a series of time stamps (t1 < t2 ,... tr). Let IDgroup denote
the group identity. The tuple (Ai, xi,ti) represents that user i
with the partial private key (Ai, xi) is revoked at time ti.
P1,P2.. Pr and Zr are calculated by the group manager with
the private secret γ as follows

Fig 3. Revocation List

Shiv Shankar Barai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4110-4117

www.ijcsit.com 4111

In addition, RL is bounded by a signature sig(RL) to
declare its validity. The signature is generated by the group
manager with the BLS algorithm, i.e. sig(RL)=γf1(RL). The
group manager then migrates RL to cloud for public use.

File Generation:
The process of storing and sharing a file in the cloud
consists of the following operations performs the following
operations:

1. Getting the revocation list from the cloud. In this
step, the member sends the group identity IDgroup as a
request to the cloud. Then, the cloud responds the
revocation list RL to the member.

2. Verifying the validity of the received revocation list.
First, checking whether the marked date is fresh.
Second, verifying the contained signature sig(RL) by
the equation e(W,f1(RL)) =e(P,sig(RL)). If the
revocation list is invalid, the data owner stops this
scheme.

3. Encrypting the data file M. The encryption process
has two cases:

a. There is no revoked user in the RL:
i. Select unique data file identity IDdata.
ii. Choosing a random number k ϵ Zq

*.
iii. Computing the parameters C1,C2,K,C

as the following equation:

Fig 4. Keys for encryptions

b. There a r revoked users in the RL:
i. Select unique data file identity IDdata.
ii. Choosing a random number k ϵ Zq

*.
iii. Computing the parameters C1,C2,K,C

as the following equation

Fig 5. Computing ciphertext

c. Selecting a random number t and
computing f(t). The hash value will be used
for data file deletion operation. In addition,
the data owner adds f(IDdata,t) into his local
storage.

d. Message format for uploaded file.

Fig 6. Message Format for Uploading Data

e. Uploading the data shown into the cloud

server and adding the IDdata into the local
shared data list maintained by the manager.
On receiving the data, the cloud first

checks its validity. If the algorithm returns
true, the group signature is valid;
otherwise, the cloud abandons the data. In
addition, if several users have been revoked
by the group manager, the cloud also
performs revocation verification. Finally,
the data file will be stored in the cloud after
successful group signature and revocation
verifications.

File Deletion:
This operation consists of following actions:

1. Obtaining the tuple (IDdata,t) from the data owner’s
local storage.

2. Invoking group signature algorithm on (IDdata, t).
3. Sending (IDdata, t) and the signature as a delete

request to cloud.
4. Upon receiving the delete request, the cloud calls

the signature generation algorithm and the
revocation verification algorithm to verify the
group signature.

5. The cloud will delete the file if f(t) equals the hash
value contained in the file.

File Access:
To access the contents of a shared file, a member has to do
the following actions:

1. Users uses his private key to compute a signature s
on the message (IDgroup,IDdata,t). The users sends
this message as a request to cloud server. On
receiving the request, the cloud server verifies the
signature and performs revocation verification.
After successful verification, the server returns the
data file and RL to server.

2. Checking the validity of revocation list, similar to
step 2 of file generation phase.

3. Verifying validity of file and decrypting it. This
operation can be divided into 3 cases based on the
time stamp tdata:
a. Case 1 (tdata<t1). There is no revoked user

before data file is uploaded
i. Check group signature. If false, user stops

this operation.
ii. Using partial private key (A,B) to

compute k=e(C1,A)e(C2,B)
iii. Decrypting the ciphertext C with the

computed key K.
b. Case 2 (ti<tdata<ti+1). The case indicates that i

users have been revoked since data file is
uploaded

i. Check group signature.
ii. Input A1,A2,..Ai to Revocation

Verification algorithm. If algorithm
returns invalid, stop operation.

iii. Calculating decryption key
K=e(C1,Ai,r)e(C2,B)

iv. Decrypt ciphertext with key K.
c. Case 3 (tr<tdata). This indicates that r users

have been revoked before the data file is
uploaded.
i. Verify group signature using group

signature algorithm.
ii. Input A1,A2,...Ar to RV algorithm. If

algorithm returns invalid, terminate

Shiv Shankar Barai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4110-4117

www.ijcsit.com 4112

operations.
iii. Calculating the decryption key

K=e(C1,Ar,r)e(C2,B).
iv. Decrypt the ciphertext C with the key K.

Traceability:

When a dispute occurs on the issue of the data owner,
the group manager performs the tracing operation to
identify the real identity of the data owner. Given a
signature s=(T1,T2,T3,C,S1,S2,S3,S4,S5), the group manager
employs his private key to compute Ai=T3-(ε1.T1+ε2.T2).
Using Ai , the group manager can identify the real owner
from the user list.

B. Outsourcing Data to a Cluster of Machines

In the problem privately outsourced computation client
wishes to delegation of a function f on a private input x to
an untrusted worker without the latter learning anything
about x and f(x). The problem of privately outsourcing
computation to a cluster of machines which occurs when
the computation is beyond the capabilities of single
machine, e.g., to analyze large scale networks, is considered.
Here the computations are performed by large scale clusters
of workers.

This problem is addressed by introducing the notion of
parallel homomorphic encryption scheme introduced in [1].
Parallel Homomorphic Encryption is an encryption
technique that support computation over encrypted data via
evaluation algorithms that can be efficiently executed in
parallel. The delegated PHE technique hides the function
being evaluated. MapReduce model of parallel computation
shows how to construct PHE schemes that supports various
MapReduce operations on encrypted datasets. The PHE
schemes are two new constructs of randomized reductions
for univariate and multivariate polynomials. Here the
privacy of the input is guaranteed even if the adversary sees
all the client’s queries.

Randomized reductions for univariate polynomials is
information-theoretically secure and is based on
permutation polynomials, whereas our reduction for
multivariate polynomials is computationally secure under
the multi-dimensional noisy curve reconstruction
assumption.

For our purposes, the cluster of workers are considered
as a system composed of w workers and one controller.
Given some input, the controller generates n jobs (where
typically n >> w) which it distributes to the workers. Each
worker executes its job in parallel and returns some value to
the controller who then decides whether to continue the
computation or stop it.

In this work, the client encrypts x and sends the
ciphertext and f to the controller. Using the ciphertext, the
controller generates n jobs that it distributes to the workers
who execute their jobs in parallel. When the entire
computation is finished, the client receives a ciphertext
which it decrypts to recover f(x). In delegated PHE the
function f is hidden. It includes an additional token
generation algorithm that takes as input f and output a token
T that reveals no information about f but that, nonetheless,
can be used by the evaluation algorithm to return an
encryption of f(x).

Applications of PHE: It is used for the setting of
outsourced computation where a weak computational
devices wishes to make use of the resources of a more
powerful server. Using this scheme a client can encrypt a
large database during an offline phase and then have the
workers evaluate different functions on its data during the
online phase. The client does not need to know the
functions it want to evaluate during the online phase at the
time of encryption.

Parallel computation: The specifics of how the
computation and communication between processors are
organized leads to particular architectures, each having
unique characteristics in terms of computational and
communication complexity. This has motivated the design
of several architecture independent models of parallel
computation, including NC circuits, the parallel RAM
(PRAM) and Dyrad Models. Arithmetic PHE scheme yields
an NC-parallel HE scheme for any function f in NC.

Applications to cloud based cluster computing: A
MapReduce algorithm is run by an execution framework
that handles the details of distributing work among the
machines in the cluster, balancing the workload so as to
optimize performance and recovering from failures. The
most popular framework is Hadoop which is open source
and used by hundreds of large organizations including
Amazon, EBay, Facebook, Yahoo, Twitter and IBM.

Recent trend in cluster computing has been to make use
of cloud infrastructures such as Amazon’s Elastic
MapReduce, Cloudera’s Hadoop distribution and Microsoft
Azure Hadoop service. With such services, a client can run
a MapReduce algorithm on massive datasets in the cloud.
While these services allow clients to take advantage of all
the benefits of cloud computing, they require the client to
trust the provider with its data.

Using an MR-parallel HE scheme a client can maintain
the confidentiality of its data while utilizing the processing
power of a third party MapReduce cluster. Of course, the
client must bear the costs of encryption and decryption
which for massive datasets can represent a non-trivial
amount of work. But this cost is dominated by the amount
of work that is outsourced. All of our constructions,
encryption can be performed in a streaming manner. This
means that even if the data is very large, it can still be
encrypted by a weak client albeit rather slowly.

1) Terminology: MapReduce: It offers a simple interface to
design and implement parallel algorithms and an
execution framework that handles the details of
distributing work among the machines in the cluster,
balancing the workload so as to optimize performance
and recovering from failures. A MapReduce program is
composed of a Map() procedure that performs filtering
and sorting and a Reduce() procedure that performs a
summary operation.

Homomorphic Encryption: Homomorphic
encryption is a secure probabilistic encryption scheme
allowing the server to perform computations on
encrypted data with the final result decrypted at the
proxy. An encryption scheme is Homomorphic if it
supports computation on encrypted data in addition to
the standard encryption and decryption algorithms it

Shiv Shankar Barai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4110-4117

www.ijcsit.com 4113

also has an evaluation algorithm that takes as input an
encryption of some message x and a function f and
returns an encryption of f(x) .

Randomized Reductions: Randomized reductions
transforms the input in to n pairs of output such that
upon decrypting the output we get original message. RR
guarantees that no information about the input can be
obtained.

2) Proposed Scheme: MapReduce Parallel homomorphic

Encryption using Randomized Reductions involves
MapReduce Algorithm, PHE algorithm and
Randomized Reduction algorithm.
Homomorphic Encryption: Let F be a family of n-ary
functions. A F-homomorphic encryption scheme is a set
of four polynomial-time algorithms HE = (Gen, Enc,
Eval, Dec) such that Gen is a probabilistic algorithm
that takes as input a security parameter k and outputs a
secret key K; Enc is a probabilistic algorithm that takes
as input a key K and an n-bit message m and outputs a
ciphertext c; Eval is a (possibly probabilistic) algorithm
that takes as input a function f ∈	 F and n encryptions
(c1,...,cn) of messages (m1,...,mn) and outputs an
encryption c of f(m1,...,mn); and Dec is a deterministic
algorithm takes as input a key K and a ciphertext c and
outputs a message m.
Map Reduce Algorithm: A MapReduce algorithm Π =
(Parse, Map, Red, Merge) is executed on a cluster of w
workers and one controller as follows. The client
provides a function f and an input x to the controller
who runs Parse on (f, x), resulting in a sequence of input
pairs (li, vi)i. Each pair is then assigned by the controller
to a worker that evaluates the Map algorithm on it. This
results in a sequence of intermediate pairs {(λj, γj)}j.
Note that since the Map algorithm is stateless, it can be
executed in parallel.
MR – Parallel HE: A private-key MR-parallel F-
homomorphic encryption scheme is a tuple of
polynomial-time algorithms PHE = (Gen, Enc, Eva,
Dec), where (Gen, Enc, Dec) are as in a private-key
encryption scheme and Eval = (Parse, Map, Red,
Merge) is a MapReduce algorithm, as explained in [2].
More precisely we have:
K ← Gen(1k): is a probabilistic algorithm that takes as
input a security parameter k and that returns a key K.
c ← Enc(K,x):is a probabilistic algorithm that takes as
input a key K and an input x from some message space
X, and that returns a ciphertext c. We sometimes write
this as c ← Enc K(x).
{(li, vi)}i ← Parse(f, c): is a deterministic algorithm that
takes as input a function f ∈F and a ciphertext c, and
that returns a sequence of input pairs.
(λj,γj)j ← Map(l,v): is a (possibly probabilistic)
algorithm that takes an input pair (l,v) and that returns a
sequence of intermediate pairs.
(λ,z) ← Red(λ, P): is a (possibly probabilistic) algorithm
that takes a label λ and a partition P of intermediate
values and returns an output pair (λ,z).

c0 ← Merge(λt,zt)t: is a deterministic algorithm that
takes as input a set of output pairs and returns a
ciphertext c0.
y ← Dec(K,c0): is a deterministic algorithm that takes a
key K and a ciphertext c0 and that returns an output y.
This is sometimes written as y ← Dec K(c0).
We say that PHE is correct if for all k ∈N, for all f ∈Fk,
for all K output by Gen(1k), for all x ∈	 X, for all c
output by EncK(x), DecK(Eval(f,c))= f(x).

3) Procedure: Let HE = (Gen, Enc, Eval, Dec) be a public-
key -homomorphic encryption scheme and let RR =
(Scatter, Recon) be a C-universal (t,n)-local randomized
reduction from f to g such that Recon belongs to F.
Consider the multi-use MR-parallel C-homomorphic
encryption scheme PHE = (Gen,Enc, Eval, Dec), where
PHE.Eval =(Parse, Map, Part, Red, Merge), defined as
follows:
 Gen(1k): compute (pk; sk)  HE:Gen(1k). Output

K = (sk, pk).
 Enc(K, x): for all i belongs to [#x], compute (si, sti)

Scatter(xi) and ei HE:Encpk(sti). Output c =
 (pk, s1,…,s#x,e1,…,e#x).
 Parse(f, c): for all i belongs to [#x] and j belongs to

[n], set li,j := i and vi,j := (f, pk, si[j], ei). Output (li,j,
vi,j) i,j.

 Map(l,v): parse v as (f, s, e) and compute a 
HE.Encpk(g(s)). Output n:=l and w:= (a, e).

 Red(n, P): parse P as (ar, er)r and compute z 
HE:Eval(Recon, er, (ar)r). Output (n,z).

 Merge((nt,zt)t):output c’ := (zt)t.
 Dec(K, c’): for all i belongs to [#c’], compute

yi := HE:Decsk(zi). Output y = (y1,….., y#c0).

C. Outsourcing Social Networks to Cloud

Storage of Social network data is one of the important
services of cloud. Today, many companies publish social
networks to a third party, e.g., a cloud service provider.
Hence, preserving privacy when publishing social network
data is important, with reasons explained in detail in [4].
Social networks model social relationships with a graph
structure using nodes and edges, where nodes model
individual social actors in a network, and edges model
relationships between social actors. The relationships
between social actors are often private, and directly
outsourcing the social networks to a cloud may result in
unacceptable disclosures. For example, publishing social
network data that describes a set of social actors related by
sexual contacts or shared drug injections may compromise
the privacy of the social actors involved. A naive approach
is to simply anonymize the identity of the social actors
before outsourcing. However, an attacker that has some
knowledge about a target’s neighbourhood, especially a
one-hop neighbourhood and the structure of the graph, can
still re-identify the target with high confidence. This type of
an attack is termed as 1*-neighbourhood attack. To generate
an anonymized social network which is secure from such an
attack, we propose a heuristic indistinguishable group
anonymization (HIGA) scheme.

Shiv Shankar Barai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4110-4117

www.ijcsit.com 4114

1) Terminology: 1-neighborhood graph: A graph showing
a target actors one hop neighbours, i.e., the neighbours
that are directly connected to the node under
consideration, using edges.

1*-neighborhood graph: A 1-neighborhood graph
where the degrees of the one hop neighbors are known.

1*-neighbourhood attack: An attack where the
attacker is assumed to know the degrees of the target’s
one-hop neighbours, in addition to the structure of the 1-
neighborhood graph.

Node Indistinguishability: Nodes u and v are
indistinguishable if an observer cannot decide whether
or not G∗ u = G∗ v in the original graph G, by
comparing G∗ u and G∗ v in an anonymized graph G.

Group Indistinguishability: For a group of nodes g =
{v|v ∈ V (G)} and |g|≥k if for each pair of nodes {u,v
|u,v ∈ g}, u and v are indistinguishable in the published
graph G, group g is an indistinguishable group.
Probabilistic Indistinguishability: A published social
network achieves probabilistic indistinguishability, if all
nodes {v|v ∈ V (G)} can be classified into m ≥ 1
groups, where each group has the property of group
indistinguishability.

2) System Model: We consider a system that consists of a
publisher, a cloud service provider, an attacker, and
many users. The publisher, such as Facebook or Twitter,
outsources a social network to a cloud. In our system, a
social network is modelled as an undirected and
unlabeled graph. The node identities are assumed to be
removed.

The attacker has certain background knowledge about
the target and he tries to re-identify the target by
analysing the outsourced social network. To protect the
privacy of the social actors in the network from the
attacker, the publisher anonymizes the network before
outsourcing.

Fig 7: Social network anonymization

3) Proposed Scheme: To generate an anonymized social
network which is secure from 1*-neighbourhood attack,
we propose a heuristic indistinguishable group
anonymization (HIGA) scheme.

Our basic idea consists of four key steps:
1. Grouping
2. Testing
3. Anonymization

 4. Randomization

Fig 8: Analogue of the HIGA scheme

The various details of the proposed scheme are explained
below:

Grouping:

We classify nodes whose 1*- neighbourhood graphs
satisfy certain metrics into groups, where each group size is
at least equal to k. We group nodes by using the following
metric: number of one-hop neighbours, in-degree sequence,
out-degree sequence, total number of edges, and
betweenness.

Although other metrics, e.g., closeness centrality and
local clustering coefficient, also can be used for grouping,
we only consider the above metrics. The concepts of
“number of one-hop neighbours” and “total number of
edges” are easily understood. Therefore, we only provide
the definitions for the other metrics.

For a node v ∈ V (G) whose 1*-neighbourhood graph
Gv* = (Gv,Dv), where Gv = (Vv,Ev), we have the
following definitions:

 Fig 9: Neighbourhood sequences

Shiv Shankar Barai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4110-4117

www.ijcsit.com 4115

For a node v, the in-degree sequence is a sequence of in-
degrees for v’s one-hop neighbours, where the in-degree for
v’s one-hop neighbourhood u is the number of edges that
are connected between u and other v’s one-hop neighbours;
the out- degree sequence is a sequence of out-degrees for
v’s one-hop neighbours, where the out-degree for v’s one-
hop neighbourhood u is the number of edges that are
connected between u and the nodes outside v’s 1-
neighborhood graph; the betweeness is the ratio of the
number of paired nodes whose shortest path must go
through node v to the total number of node pairs in v’s 1-
neighborhood graph.

Testing:

Random walks are used for testing. The random walk
(RW) is known as a useful tool to obtain the steady state
distribution for a graph, referred to as the topological
signatures, which provide the foundation for the
approximate matching. Specifically, given graph G = (V
(G), E (G)), where V (G) = {u1, u |V (G)|}. A RW on G
allows the probability puj(t) of a node uj ∈ V (G) being
located at time t to be computed with Eq. 1:

Fig 10: Probability of locating a node at a time

where |V (G)| is the number of nodes in G, |N(uj)| is the

number of one-hop neighbours for node uj, and d is the
damping factor which defines the probability of directly
jumping or traversing. For Eq. 1, the first part relates to the
probability of moving from node ui to uj by jumping
directly, while node ui is not a one-hop neighbour of uj; the
second part relates to the probability by traversing the edge
from u to uj, while node ui is a one-hop neighbour of uj.
Therefore, the probability distribution on all nodes in G,
denoted as a vector p (t) = [pu1 (t), pu|V (G)|(t)], can be
calculated with Eq. 2:

Fig 11: Probability distribution function of the nodes

Where W = (θA)’, A being the adjacency matrix of the

graph and θ the diagonal matrix whose diagonal element is
1 |N(ui)| ; I is a vector whose entries are all equal to one.

Anonymization:

Suppose that there are m groups, g1,...,gm, where each
group size is assumed to be at least equal to k. For each
group, if any pair of nodes are not approximately matching,
we use a heuristic anonymization algorithm to make the 1-
neighbourhood graphs approximately match as follows:
Initially, the candidate group set (CGS) consists of m
groups. We sort groups in descending order of the number
of neighbours, pick the first one as the processing group,

and remove it from CGS. For each node in the processing
group, we construct its 1-neighborhood graph, and use RW
to calculate related topological signatures. Then, for any
pair of nodes u and v, we use Eq. 5 to calculate the cost of
matching their 1-neighborhood graphs. For any pair of
nodes, if this cost is smaller than a threshold value α, we
choose the next grouping in CGS as the processing group
and do it again.

Otherwise, we modify 1-neighborhood graphs of the
nodes in the processing group as follows: We first choose a
random node u in the group as the group seed. For any
other node v in this group, if the related cost cost(Gu,Gv) is
larger than α, we approach the structure of Gu to that of Gv
with probability q, and approach the structure of Gv to that
Gu with probability 1−q. This process will continue until,
for any pair of nodes in the processing group, the cost for
matching their 1-neighborhood graphs is equal to or smaller
than α. The anonymization process may be recursive, since
some changes may impact the groups that have been
processed previously. However, due to the power-law node
distribution, and the small world phenomenon, this process
will rapidly stop.

To approach the structure of Gv = (Vv,Ev) to that of Gu
= (Vu,Eu), we first obtain the optimal matching of nodes in
two graphs. In the optimal matching, for any pair of nodes x
∈ Vv and w ∈ Vu, if cost(x,w) >α , we make u’s
connections the same as those of v. During the approaching
process, we make sure that the structure of Gu will not be
modified.

Randomization:

Consider a graph G = (V (G), E (G)) and a
randomization probability p. We first randomly remove
p(|E(G)|) edges from G, and then for two nodes that are not
linked, we add an edge with probability p. The key problem
lies in determining p to randomize the graph.

IV. CONCLUSION

We address the issues Data ownership and group
management, Outsourcing data to a cluster of machines,
Outsourcing social networks to cloud by the above
mentioned techniques.
 To address data ownership and group management, we
design a secure data sharing scheme for dynamic groups in
an untrusted cloud. In this scheme, a user is able to share
data with others in the group without revealing identity
privacy to the cloud. Additionally, the scheme supports
efficient user revocation and new user joining. More
specially, efficient user revocation can be achieved through
a public revocation list without updating the private keys of
the remaining users, and new users can directly decrypt
files stored in the cloud before their participation.
 By using Parallel Homomorphic Encryption we can
ensure the data integrity and data error localization. PHE
schemes can be used to evaluate several functionalities such
as keyword search, set membership testing and disjunctions.
 Using Heuristic Indistinguishable Group Anonymization
(HIGA) scheme to anonymize social networks is an
effective security measure and that it doesn’t compromise
query answer accuracy

Shiv Shankar Barai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4110-4117

www.ijcsit.com 4116

REFERENCES
[1] Sena Kamara and Mariana Raykova, “Parallel Homomorphic

Encryption”, Microsoft Research, 2013.
[2] Sowmya.D, “Cryptographic cloud storage with Hadoop

Implementation”, IOSR Journal of Computer Engineering, 2013.
[3] Xuefeng Liu, Yuqing Zhang, Boyang Wang, and Jingbo Yan, Mona:

“Secure Multi-Owner Data Sharing for Dynamic Groups in the
Cloud”, IEEE Transactions On Parallel And Distributed Systems,
2013.

[4] Guojun Wang, Qin Liu, Shuhui Yang and Jie Wu, “Outsourcing
Privacy – Preserving Social Networks to a Cloud”, IEEE
transactions on social networking, 2013.

[5] “Can Homomorphic Encryption be Practical?”, Microsoft Research,
2013.

[6] R. Lu, X. Lin, X. Liang, and X. Shen, “Secure Provenance: The
Essential of Bread and Butter of Data Forensics in Cloud
Computing,” Proc. ACM Symp. Information, Computer and Comm.
Security, pp. 282-292, 2010

[7] B. Zhou and J. Pei, “Preserving privacy in social networks against
neighborhood attacks,” in Proc. of IEEE ICDE, 2008

[8] Henri Gilbert, “Advances in Cryptology -EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques”, French Riviera, May 30 -June 3, 2010.
Proceedings, volume 6110 of Lecture Notes in Computer Science.
Springer, 2010

Shiv Shankar Barai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4110-4117

www.ijcsit.com 4117

